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Abstract

We consider the scenario where training and test data are drawn from different
distributions, commonly referred to assample selection bias. Most algorithms
for this setting try to first recover sampling distributionsand then make appro-
priate corrections based on the distribution estimate. We present a nonparametric
method which directly produces resampling weights withoutdistribution estima-
tion. Our method works by matching distributions between training and testing
sets in feature space. Experimental results demonstrate that our method works
well in practice.

1 Introduction

The default assumption in many learning scenarios is that training and test data are independently
and identically (iid) drawn from thesamedistribution. When the distributions on training and test
set do not match, we are facingsample selection biasor covariate shift. Specifically, given a domain
of patternsX and labelsY, we obtain training samplesZ = {(x1, y1), . . . , (xm, ym)} ⊆ X×Y from
a Borel probability distributionPr(x, y), and test samplesZ ′ = {(x′

1, y
′
1), . . . , (x

′
m′ , y′

m′)} ⊆ X×Y

drawn from another such distributionPr′(x, y).

Although there exists previous work addressing this problem [2, 5, 8, 9, 12, 16, 20], sample selection
bias is typically ignored in standard estimation algorithms. Nonetheless, in reality the problem
occurs rather frequently : While the available data have been collected in a biased manner, the test is
usually performed over a more general target population. Below, we give two examples; but similar
situations occur in many other domains.
1. Suppose we wish to generate a model to diagnose breast cancer. Suppose, moreover, that most
women who participate in the breast screening test are middle-aged and likely to have attended the
screening in the preceding 3 years. Consequently our sampleincludes mostly older women and
those who have low risk of breast cancer because they have been tested before. The examples do not
reflect the general population with respect to age (which amounts to a bias inPr(x)) and they only
contain very few diseased cases (i.e. a bias inPr(y|x)).
2. Gene expression profile studies using DNA microarrays areused in tumor diagnosis. A common
problem is that the samples are obtained using certain protocols, microarray platforms and analysis
techniques. In addition, they typically have small sample sizes. The test cases are recorded under
different conditions, resulting in a different distribution of gene expression values.

In this paper, we utilize the availability of unlabeled datato direct a sample selection de-biasing
procedure for various learning methods. Unlike previous work we infer the resampling weightdi-
rectlyby distribution matching between training and testing setsin feature space in a non-parametric



manner. We do not require the estimation of biased densitiesor selection probabilities [20, 2, 12], or
the assumption that probabilities of the different classesare known [8]. Rather, we account for the
difference betweenPr(x, y) andPr′(x, y) by reweighting the training points such that the means
of the training and test points in a reproducing kernel Hilbert space (RKHS) are close. We call this
reweighting process kernel mean matching (KMM). When the RKHS is universal [14], the popula-
tion solution to this miminisation is exactly the ratioPr′(x, y)/ Pr(x, y); however, we also derive a
cautionary result, which states that even granted this ideal population reweighting, the convergence
of the empirical means in the RKHS depends on an upper bound onthe ratio of distributions (but
not on the dimension of the space), and will be extremely slowif this ratio is large.

The required optimisation is a simple QP problem, and the reweighted sample can be incorpo-
rated straightforwardly into several different regression and classification algorithms. We apply our
method to a variety of regression and classification benchmarks from UCI and elsewhere, as well as
to classification of microarrays from prostate and breast cancer patients. These experiments demon-
strate that KMM greatly improves learning performance compared with training on unweighted data,
and that our reweighting scheme can in some cases outperformreweighting using the true sample
bias distribution.

Key Assumption 1: In general, the estimation problem with two different distributionsPr(x, y)
andPr′(x, y) is unsolvable, as the two terms could be arbitrarily far apart. In particular, for arbi-
trary Pr(y|x) andPr′(y|x), there is no way we could infer a good estimator based on the training
sample. Hence we make the simplifying assumption thatPr(x, y) andPr′(x, y) only differ via
Pr(x, y) = Pr(y|x) Pr(x) andPr(y|x) Pr′(x). In other words, the conditional probabilities ofy|x
remainunchanged(this particular case of sample selection bias has been termed covariate shift
[12]). However, we will see experimentally that even in situations where our key assumption is not
valid, our method can nonetheless perform well (see Section4).

2 Sample Reweighting

We begin by stating the problem of regularized risk minimization. In general a learning method
minimizes the expected risk

R[Pr, θ, l(x, y, θ)] = E(x,y)∼Pr [l(x, y, θ)] (1)

of a loss functionl(x, y, θ) that depends on a parameterθ. For instance, the loss function could
be the negative log-likelihood− logPr(y|x, θ), a misclassification loss, or some form of regression
loss. However, since typically we only observe examples(x, y) drawn fromPr(x, y) rather than
Pr′(x, y), we resort to computing the empirical average

Remp[Z, θ, l(x, y, θ)] =
1

m

m∑

i=1

l(xi, yi, θ). (2)

To avoid overfitting, instead of minimizingRemp directly we often minimize a regularized variant
Rreg[Z, θ, l(x, y, θ)] := Remp[Z, θ, l(x, y, θ)] + λΩ[θ], whereΩ[θ] is a regularizer.

2.1 Sample Correction

The problem is more involved ifPr(x, y) andPr′(x, y) are different. The training set is drawn from
Pr, however what we would really like is to minimizeR[Pr′, θ, l] as we wish to generalize to test
examples drawn fromPr′. An observation from the field of importance sampling is that

R[Pr ′, θ, l(x, y, θ)] = E(x,y)∼Pr′ [l(x, y, θ)] = E(x,y)∼Pr

[
Pr′(x,y)
Pr(x,y)
︸ ︷︷ ︸

:=β(x,y)

l(x, y, θ)
]

(3)

= R[Pr, θ, β(x, y)l(x, y, θ)], (4)

provided that the support ofPr′ is contained in the support ofPr. Given β(x, y), we can thus
compute the risk with respect toPr′ usingPr. Similarly, we canestimatethe risk with respect to
Pr′ by computingRemp[Z, θ, β(x, y)l(x, y, θ)].

The key problem is that the coefficientsβ(x, y) are usually unknown, and we need to estimate them
from the data. WhenPr andPr′ differ only in Pr(x) andPr′(x), we haveβ(x, y) = Pr′(x)/Pr(x),
whereβ is a reweighting factor for the training examples. We thus reweight every observation



(x, y) such that observations that are under-represented inPr obtain a higher weight, whereas over-
represented cases are downweighted.

Now we could estimatePr andPr′ and subsequently computeβ based on those estimates. This is
closely related to the methods in [20, 8], as they have to either estimate the selection probabilities
or have prior knowledge of the class distributions. Although intuitive, this approach has two major
problems: first, it only works whenever the density estimates for Pr andPr′(or potentially, the se-
lection probabilities or class distributions) are good. Inparticular, small errors in estimatingPr can
lead to large coefficientsβ and consequently to a serious overweighting of the corresponding obser-
vations. Second, estimating both densities just for the purpose of computing reweighting coefficients
may be overkill: we may be able to directly estimate the coefficientsβi := β(xi, yi) without having
to estimate the two distributions. Furthermore, we can regularizeβi directly with more flexibility,
taking prior knowledge into account similar to learning methods for other problems.

2.2 Using the sample reweighting in learning algorithms

Before we describe how we will estimate the reweighting coefficientsβi, let us briefly discuss how
to minimize the reweighted regularized risk

Rreg[Z, β, l(x, y, θ)] :=
1

m

m∑

i=1

βil(xi, yi, θ) + λΩ[θ], (5)

in the classification and regression settings (an additional classification method is discussed in the
accompanying technical report [7]).

Support Vector Classification: Utilizing the setting of [17]we can have the following minimization
problem (the original SVMs can be formulated in the same way):

minimize
θ,ξ

1

2
‖θ‖2

+ C

m∑

i=1

βiξi (6a)

subject to〈φ(xi, yi) − φ(xi, y), θ〉 ≥ 1 − ξi/∆(yi, y) for all y ∈ Y, andξi ≥ 0. (6b)

Here,φ(x, y) is a feature map fromX×Y into a feature spaceF, whereθ ∈ F and∆(y, y′) denotes
a discrepancy function betweeny andy′. The dual of (6) is given by

minimize
α

1

2

m∑

i,j=1;y,y′∈Y

αiyαjy′k(xi, y, xj , y
′) −

m∑

i=1;y∈Y

αiy (7a)

subject toαiy ≥ 0 for all i, y and
∑

y∈Y

αiy/∆(yi, y) ≤ βiC. (7b)

Herek(x, y, x′, y′) := 〈φ(x, y), φ(x′, y′)〉 denotes the inner product between the feature maps. This
generalizes the observation-dependent binary SV classification described in [10]. Modifications of
existing solvers, such as SVMStruct [17], are straightforward.

Penalized LMS Regression:Assumel(x, y, θ) = (y − 〈φ(x), θ〉)2 andΩ[θ] = ‖θ‖2. Here we
minimize m∑

i=1

βi(yi − 〈φ(xi), θ〉)2 + λ ‖θ‖2
. (8)

Denote byβ̄ the diagonal matrix with diagonal(β1, . . . , βm) and letK ∈ R
m×m be the kernel

matrixKij = k(xi, xj). In this case minimizing (8) is equivalent to minimizing(y − Kα)⊤β̄(y −
Kα) + λα⊤Kα with respect toα. Assuming thatK andβ̄ have full rank, the minimization yields
α = (λβ̄−1 + K)−1y. The advantage of this formulation is that it can be solved aseasily as solving
the standard penalized regression problem. Essentially, we rescale the regularizer depending on the
pattern weights: the higher the weight of an observation, the less we regularize.

3 Distribution Matching

3.1 Kernel Mean Matching and its relation to importance sampling

Let Φ : X → F be a map into a feature spaceF and denote byµ : P → F the expectation operator



µ(Pr) := Ex∼Pr(x) [Φ(x)] . (9)

Clearlyµ is alinear operator mapping the space of all probability distributionsP into feature space.
Denote byM(Φ) := {µ(Pr) wherePr ∈ P} the image ofP underµ. This set is also often referred
to as themarginal polytope. We have the following theorem (proved in [7]):

Theorem 1 The operatorµ is bijective if F is an RKHS with a universal kernelk(x, x′) =
〈Φ(x), Φ(x′)〉 in the sense of Steinwart [15].

The use of feature space means to compare distributions is further explored in [3]. The practical
consequence of this (rather abstract) result is that if we know µ(Pr′), we can infer a suitableβ by
solving the following minimization problem:

minimize
β

∥
∥µ(Pr ′) − Ex∼Pr(x) [β(x)Φ(x)]

∥
∥ subject toβ(x) ≥ 0 andEx∼Pr(x) [β(x)] = 1. (10)

This is the kernel mean matching (KMM) procedure. For a proofof the following (and further
results in the paper) see [7].

Lemma 2 The problem (10) is convex. Moreover, assume thatPr′ is absolutely continuous with
respect toPr (soPr(A) = 0 impliesPr′(A) = 0). Finally assume thatk is universal. Then the
solutionβ(x) of (10) isPr′(x) = β(x)Pr(x).

3.2 Convergence of reweighted means in feature space

Lemma 2 shows that in principle, if we knewPr andµ[Pr′], we could fully recoverPr′ by solving
a simple quadratic program. In practice, however, neitherµ(Pr′) norPr is known. Instead, we only
have samplesX andX ′ of sizem andm′, drawn iid fromPr andPr′ respectively.

Naively we could just replace the expectations in (10) by empirical averages and hope that the
resulting optimization problem provides us with a good estimate ofβ. However, it is to be expected
that empirical averages will differ from each other due to finite sample size effects. In this section,
we explore two such effects. First, we demonstrate that in the finite sample case, for a fixedβ, the
empirical estimate of the expectation ofβ is normally distributed: this provides a natural limit on
the precision with which we should enforce the constraint

∫
β(x)d Pr(x) = 1 when using empirical

expectations (we will return to this point in the next section).

Lemma 3 If β(x) ∈ [0, B] is some fixed function ofx ∈ X, then givenxi ∼ Pr iid such thatβ(xi)
has finite mean and non-zero variance, the sample mean1

m

∑

i β(xi) converges in distribution to a
Gaussian with mean

∫
β(x)d Pr(x) and standard deviation bounded byB

2
√

m
.

This lemma is a direct consequence of the central limit theorem [1, Theorem 5.5.15]. Alternatively,
it is straightforward to get a large deviation bound that likewise converges as1/

√
m [6].

Our second result demonstrates the deviation between the empirical means ofPr′ andβ(x) Pr in
feature space, givenβ(x) is chosen perfectly in the population sense. In particular,this result shows
that convergence of these two means will be slow if there is a large difference in the probability mass
of Pr′ andPr (and thus the boundB on the ratio of probability masses is large).

Lemma 4 In addition to the Lemma 3 conditions, assume that we drawX ′ := {x′
1, . . . , x

′
m′} iid

fromX usingPr′ = β(x) Pr, and‖Φ(x)‖ ≤ R for all x ∈ X. Then with probability at least1 − δ

∥
∥
∥

1

m

m∑

i=1

β(xi)Φ(xi) −
1

m′

m′

∑

i=1

Φ(x′
i)

∥
∥
∥ ≤

(

1 +
√

−2 log δ/2
)

R
√

B2/m + 1/m′ (11)

Note that this lemma shows that for agivenβ(x), which is correct in the population sense, we can
bound the deviation between the feature space mean ofPr′ and the reweighted feature space mean
of Pr. It is not a guarantee that we will find coefficientsβi that are close toβ(xi), but it gives us a
useful upper bound on the outcome of the optimization.

Lemma 4 implies that we haveO(B
√

1/m + 1/m′B2) convergence inm, m′ andB. This means
that, for very different distributions we need a large equivalent sample size to get reasonable conver-
gence. Our result also implies that it is unrealistic to assume that the empirical means (reweighted
or not) should match exactly.



3.3 Empirical KMM optimization

To find suitable values ofβ ∈ R
m we want to minimize the discrepancy between means subject

to constraintsβi ∈ [0, B] and | 1
m

∑m
i=1 βi − 1| ≤ ǫ. The former limits the scope of discrepancy

betweenPr andPr′ whereas the latter ensures that the measureβ(x) Pr(x) is close to a probability
distribution. The objective function is given by the discrepancy term between the two empirical

means. UsingKij := k(xi, xj) andκi := m
m′

∑m′

j=1 k(xi, x
′
j) one may check that

∥
∥
∥

1

m

m∑

i=1

βiΦ(xi) −
1

m′

m′

∑

i=1

Φ(x′
i)

∥
∥
∥

2

=
1

m2
β⊤Kβ − 2

m2
κ⊤β + const.

We now have all necessary ingredients to formulate a quadratic problem to find suitableβ via

minimize
β

1

2
β⊤Kβ − κ⊤β subject toβi ∈ [0, B] and

∣
∣
∣

m∑

i=1

βi − m
∣
∣
∣ ≤ mǫ. (12)

In accordance with Lemma 3, we conclude that a good choice ofǫ should beO(B/
√

m). Note
that (12) is a quadratic program which can be solved efficiently using interior point methods or any
other successive optimization procedure. We also point outthat (12) resembles Single Class SVM
[11] using theν-trick. Besides the approximate equality constraint, the main difference is the linear
correction term by means ofκ. Large values ofκi correspond to particularly important observations
xi and are likely to lead to largeβi.

4 Experiments

4.1 Toy regression example

Our first experiment is on toy data, and is intended mainly to provide a comparison with the approach
of [12]. This method uses an information criterion to optimise the weights, under certain restrictions
on Pr andPr′ (namely,Pr′ must be known, whilePr can be either known exactly, Gaussian with
unknown parameters, or approximated via kernel density estimation).

Our data is generated according to the polynomial regression example from [12, Section 2], for
whichPr ∼ N(0.5, 0.52) andPr′ ∼ N(0, 0.32) are two normal distributions. The observations are
generated according toy = −x + x3, and are observed in Gaussian noise with standard deviation
0.3 (see Figure 1(a); the blue curve is the noise-free signal).

We sampled 100 training (blue circles) and testing (red circles) points fromPr andPr′ respectively.
We attempted to model the observations with a degree 1 polynomial. The black dashed line is a
best-case scenario, which is shown for reference purposes:it represents the model fit using ordinary
least squared (OLS) on the labeled test points. The red line is a second reference result, derived
only from the training data via OLS, and predicts the test data very poorly. The other three dashed
lines are fit with weighted ordinary least square (WOLS), using one of three weighting schemes: the
ratio of the underlying training and test densities, KMM, and the information criterion of [12]. A
summary of the performance over 100 trials is shown in Figure1(b). Our method outperforms the
two other reweighting methods.
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Figure 1: (a) Polynomial models of degree 1 fit with OLS and WOLS;(b) Average performances of three
WOLS methods and OLS on the test data in (a). Labels areRatiofor ratio of test to training density; KMM for
our approach;min IC for the approach of [12]; andOLSfor the model trained on the labeled test points.



4.2 Real world datasets

We next test our approach on real world data sets, from which we select training examples using a
deliberately biased procedure (as in [20, 9]). To describe our biased selection scheme, we need to
define an additional random variablesi for each point in the pool of possible training samples, where
si = 1 means theith sample is included, andsi = 0 indicates an excluded sample. Two situations
are considered: the selection bias corresponds to our assumption regarding the relation between
the training and test distributions, andP (si = 1|xi, yi) = P (si|xi); or si is dependent only on
yi, i.e. P (si|xi, yi) = P (si|yi), which potentially creates a greater challenge since it violates our
key assumption 1. In the following, we compare our method (labeledKMM) against two others: a
baseline unweighted method (unweighted), in which no modification is made, and a weighting by
the inverse of the true sampling distribution (importance sampling), as in [20, 9]. We emphasise,
however, that our method doesnot require any prior knowledge of the true sampling probabilities.
In our experiments, we used a Gaussian kernelexp(−σ‖xi − xj‖2) in our kernel classification and
regression algorithms, and parametersǫ = (

√
m − 1)/

√
m andB = 1000 in the optimization (12).
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Figure 2:Classification performance analysis on breast cancer dataset from UCI.

4.2.1 Breast Cancer Dataset
This dataset is from the UCI Archive, and is a binary classification task. It includes 699 examples
from 2 classes: benign (positive label) and malignant (negative label). The data are randomly split
into training and test sets, where the proportion of examples used for training varies from 10% to
50%. Test results are averaged over 30 trials, and were obtained using a support vector classifier with
kernel sizeσ = 0.1. First, we consider a biased sampling scheme based on the input features, of
which there are nine, with integer values from 0 to 9. Since smaller feature values predominate in the
unbiased data, we sample according toP (s = 1|x ≤ 5) = 0.2 andP (s = 1|x > 5) = 0.8, repeating
the experiment for each of the features in turn. Results are an average over 30 random training/test
splits, with 1/4 of the data used for training and 3/4 for testing. Performance is shown in Figure 2(a):
we consistently outperform the unweighted method, and match or exceed the performance obtained
using the known distribution ratio. Next, we consider a sampling bias that operates jointly across
multiple features. We select samples less often when they are further from the sample meanx over
the training data, i.e.P (si|xi) ∝ exp(−σ‖xi − x‖2) whereσ = 1/20. Performance of our method
in 2(b) is again better than the unweighted case, and as good as or better than reweighting using the
sampling model. Finally, we consider a simple biased sampling scheme which depends only on the
labely: P (s = 1|y = 1) = 0.1 andP (s = 1|y = −1) = 0.9 (the data has on average twice as
many positive as negative examples when uniformly sampled). Average performance for different
training/testing split proportions is in Figure 2(c); remarkably, despite our assumption regarding the
difference between the training and test distributions being violated, our method still improves the
test performance, and outperforms the reweighting by density ratio for large training set sizes. Fig-



ure 2(d) shows the weightsβ are proportional to the inverse of true sampling probabilities: positive
examples have higher weights and negative ones have lower weights.

4.2.2 Further Benchmark Datasets
We next compare the performance on further benchmark datasets1 by selecting training data via
various biased sampling schemes. Specifically, for the sampling distribution bias on labels, we
useP (s = 1|y) = exp(a + by)/(1 + exp(a + by)) (datasets 1 to 5), or the simple step distri-
bution P (s = 1|y = 1) = a, P (s = 1|y = −1) = b (datasets 6 and 7). For the remaining
datasets, we generate biased sampling schemes over their features. We first do PCA, selecting the
first principal component of the training data and the corresponding projection values. Denoting
the minimum value of the projection asm and the mean asm, we apply a normal distribution with
meanm + (m − m)/a and variance(m − m)/b as the biased sampling scheme. Please refer to
[7] for detailed parameter settings. We use penalized LMS for regression problems and SVM for
classification problems. To evaluate generalization performance, we utilize thenormalized mean
square error (NMSE)given by 1

n

∑n
i=1

(yi−µi)
var y for regression problems, and the average test error

for classification problems. In 13 out of 23 experiments, ourreweighting approach is the most accu-
rate (see Table 1), despite having no prior information about the bias of the test sample (and, in some
cases, despite the additional fact that the data reweighting does not conform to our key assumption
1). In addition, the KMMalwaysimproves test performance compared with the unweighted case.
Two additional points should be borne in mind: first, we use the sameσ for the kernel mean match-
ing and the SVM, as listed in Table 1. Performance might be improved by decoupling these kernel
sizes: indeed, we employ kernels that are somewhat large, suggesting that the KMM procedure is
helpful in the case of relatively smooth classification/regresssion functions. Second, we did not find
a performance improvement in the case of data sets with smaller sample sizes. This is not surprising,
since a reweighting would further reduce the effective number of points used for training, resulting
in insufficient data for learning.

Table 1: Test results for three methods on 18 datasets with differentsampling schemes. The results are
averages over 10 trials for regression problems (marked *) and 30 trials for classification problems. We used a
Gaussian kernel of sizeσ for both the kernel mean matching and the SVM/LMS regression, and setB = 1000.

NMSE / Test err.
DataSet σ ntr selected ntst unweighted importance samp. KMM
1. Abalone* 1e − 1 2000 853 2177 1.00 ± 0.08 1.1 ± 0.2 0.6 ± 0.1
2. CA Housing* 1e − 1 16512 3470 4128 2.29 ± 0.01 1.72 ± 0.04 1.24± 0.09

3. Delta Ailerons(1)* 1e3 4000 1678 3129 0.51 ± 0.01 0.51 ± 0.01 0.401± 0.007

4. Ailerons* 1e − 5 7154 925 6596 1.50 ± 0.06 0.7 ± 0.1 1.2 ± 0.2
5. haberman(1) 1e − 2 150 52 156 0.50 ± 0.09 0.37 ± 0.03 0.30± 0.05

6. USPS(6vs8)(1) 1/128 500 260 1042 0.13 ± 0.18 0.1 ± 0.2 0.1 ± 0.1
7. USPS(3vs9)(1) 1/128 500 252 1145 0.016 ± 0.006 0.012± 0.005 0.013 ± 0.005
8. Bank8FM* 1e − 1 4500 654 3692 0.5 ± 0.1 0.45± 0.06 0.47 ± 0.05
9. Bank32nh* 1e − 2 4500 740 3692 23 ± 4.0 19 ± 2 19 ± 2

10. cpu-act* 1e − 12 4000 1462 4192 10 ± 1 4.0 ± 0.2 1.9 ± 0.2
11. cpu-small* 1e − 12 4000 1488 4192 9 ± 2 4.0 ± 0.2 2.0 ± 0.5
12. Delta Ailerons(2)* 1e3 4000 634 3129 2 ± 2 1.5 ± 1.5 1.7 ± 0.9
13. Boston house* 1e − 4 300 108 206 0.8 ± 0.2 0.74± 0.09 0.76 ± 0.07
14. kin8nm* 1e − 1 5000 428 3192 0.85 ± 0.2 0.81± 0.1 0.81± 0.2
15. puma8nh* 1e − 1 4499 823 3693 1.1 ± 0.1 0.77± 0.05 0.83 ± 0.03
16. haberman(2) 1e − 2 150 90 156 0.27 ± 0.01 0.39 ± 0.04 0.25± 0.2
17. USPS(6vs8) (2) 1/128 500 156 1042 0.23 ± 0.2 0.23 ± 0.2 0.16± 0.08

18. USPS(6vs8) (3) 1/128 500 104 1042 0.54 ± 0.0002 0.5 ± 0.2 0.16± 0.04

19. USPS(3vs9)(2) 1/128 500 252 1145 0.46 ± 0.09 0.5 ± 0.2 0.2 ± 0.1
20. Breast Cancer 1e − 1 280 96 419 0.05 ± 0.01 0.036 ± 0.005 0.033± 0.004

21. India diabetes 1e − 4 200 97 568 0.32 ± 0.02 0.30± 0.02 0.30± 0.02

22. ionosphere 1e − 1 150 64 201 0.32 ± 0.06 0.31 ± 0.07 0.28± 0.06

23. German credit 1e − 4 400 214 600 0.283 ± 0.004 0.282 ± 0.004 0.280± 0.004

4.2.3 Tumor Diagnosis using Microarrays
Our next benchmark is a dataset of 102 microarrays from prostate cancer patients [13]. Each of these
microarrays measures the expression levels of 12,600 genes. The dataset comprises 50 samples
from normal tissues (positive label) and 52 from tumor tissues (negative label). We simulate the
realisitc scenario that two sets of microarrays A and B are given with dissimilar proportions of tumor
samples, and we want to perform cancer diagnosis via classification, training on A and predicting

1Regression data fromhttp://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html;
classification data from UCI. Sets with numbers in brackets are examined by different sampling schemes.



on B. We select training examples via the biased selection schemeP (s = 1|y = 1) = 0.85 and
P (s = 1|y = −1) = 0.15. The remaining data points form the test set. We then performSVM
classification for the unweighted, KMM, and importance sampling approaches. The experiment
was repeated over 500 independent draws from the dataset according to our biased scheme; the 500
resulting test errors are plotted in [7]. The KMM achieves much higher accuracy levels than the
unweighted approach, and is very close to the importance sampling approach.

We study a very similar scenario on two breast cancer microarray datasets from [4] and [19], mea-
suring the expression levels of 2,166 common genes for normal and cancer patients [18]. We train
an SVM on one of them and test on the other. Our reweighting method achieves significant improve-
ment in classification accuracy over the unweighted SVM (see[7]). Hence our method promises to
be a valuable tool for cross-platform microarray classification.
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